
Calculus 1
Midterm Exam – Solutions
October 3, 2022 (18:30 – 20:30)

1) Prove using the ε-δ definition that lim
x→3

(4x− 1) = 11.

Solution. Let ε > 0 be arbitrary and take δ = ε
4
. Then 0 < |x− 3| < δ implies that

|(4x− 1)− 11| = |4x− 12| = |4(x− 3)| = 4|x− 3| < 4δ = ε.

Therefore lim
x→3

(4x− 1) = 11.

2) Find the following limits without applying l’Hospital’s Rule.

a) lim
x→−2

x2 − 3x− 10

x+ 2

b) lim
x→0

√
cos(x)− 1

x2

c) lim
x→∞

ex − e−x

ex + e−x

Solution. a) Factoring the numerator lets us simplify the expression. The limits is then found by the
Difference Law and Basic Limits:

lim
x→−2

x2 − 3x− 10

x+ 2
= lim

x→−2

(x+ 2)(x− 5)

x+ 2
= lim

x→−2
(x− 5) = −2− 5 = −7.

b) Using conjugates twice allows for a rewriting of the function as follows

lim
x→0

√
cos(x)− 1

x2
= lim

x→0

√
cos(x)− 1

x2
·
√

cos(x) + 1√
cos(x) + 1

= lim
x→0

cos(x)− 1

x2(
√
cos(x) + 1)

= lim
x→0

cos(x)− 1

x2(
√

cos(x) + 1)
· cos(x) + 1

cos(x) + 1
= lim

x→0

cos2(x)− 1

x2(
√
cos(x) + 1)(cos(x) + 1)

.

The trigonometric identity
sin2(x) + cos2(x) = 1

lets us write the numerator as (− sin2 x), hence the limit takes the following form

lim
x→0

− sin2(x)

x2(
√

cos(x) + 1)(cos(x) + 1)
.

By using the trigonometric limit

lim
x→0

sin(x)

x
= 1

(we proved in class) we can evaluate the limit via the Product Law and the continuity of the cosine
function at 0. We get

lim
x→0

− sin2(x)

x2(
√
cos(x) + 1)(cos(x) + 1)

=

(
lim
x→0

sin(x)

x

)2 −1

(
√

cos(0) + 1)(cos(0) + 1)
= −1

4

since cos(0) = 1. Thus we have found that

lim
x→0

√
cos(x)− 1

x2
= −1

4
.
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c) Factoring both the numerator and denominator yields

lim
x→∞

ex − e−x

ex + e−x
= lim

x→∞

��ex

��ex

1− 1

e2x

1 +
1

e2x

=
1− 0

1 + 0
= 1,

where we used Quotient, Sum, and Difference Laws combined with the fact that lim
x→∞

e−2x = 0.

3) Show using the Squeeze Theorem that lim
x→0

√
x2 cos

(
1

x2

)
= 0

Solution. For every x ∈ R we have −1 ≤ cos(x) ≤ 1 and, in particular, this means that

−1 ≤ cos

(
1

x2

)
≤ 1, for all x ∈ R \ {0}.

Note that
√
x2 ≥ 0 and

√
x2 = 0 if and only if x = 0. Hence we have that

−
√
x2 ≤

√
x2 cos

(
1

x2

)
≤

√
x2, for all x ∈ R \ {0}.

Moreover, we know that
√
x2, being an elementary function, is continuous on its domain, and in particular

at 0, i.e.
lim
x→0

±
√
x2 = 0.

Hence by the Squeeze Theorem we can conclude that

lim
x→0

√
x2 cos

(
1

x2

)
= 0.

4) Prove the following statement using mathematical induction on N .

“(1 + x)N ≥ 1 +Nx for every integer N ≥ 0 and real number x > −1.”

Solution. Step 1 [Base Case]: We prove the base case, i.e., N = 0.

(1 + x)0 = 1

1 + 0 · x = 1

We have 1 ≥ 1, which is true so the base case holds.
Step 2 [Induction Hypothesis]: We assume that for some integer k ≥ 0 we have

(1 + x)k ≥ 1 + kx (1)

where x > −1.
Step 3 [Inductive Step]: We want to prove that the inequality holds for k+1 as well. Since 1+x > 0,

we can multiply both sides of (1) by 1 + x without the inequality changing sign and obtain

(1 + x)k+1 = (1 + x)(1 + x)k ≥ (1 + x)(1 + kx) = 1 + x+ kx+ kx2 ≥ 1 + (k + 1)x

since kx2 ≥ 0. Thus we got
(1 + x)k+1 ≥ 1 + (k + 1)x,

which is exactly what we needed to show.

In conclusion, We have proven by induction that for any integer N ≥ 0 and x > −1 we have
(1 + x)N ≥ 1 +Nx. This result in knows as Bernoulli’s inequality.
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5) Find the derivative of the real function f(x) = e

(
x

x2+1

)
. At each step, indicate which rule of differen-

tiation is being applied.

Solution. We have

f ′(x)
(1)
= [e

(
x

x2+1

)
]′ (Chain Rule)

(2)
= e

(
x

x2+1

)
·
[

x

x2 + 1

]′
(Quotient Rule)

(3)
= e

(
x

x2+1

)
· [x]

′ · (x2 + 1)− x · [(x2 + 1)]′

(x2 + 1)2
(Sum Rule and Basic Derivatives)

(4)
= e

(
x

x2+1

)
· 1 · (x

2 + 1)− x · [(x2)′ + (1)′]

(x2 + 1)2
(Power Rule and Basic Derivatives)

(5)
= e

(
x

x2+1

)
· x

2 + 1− x · (2x+ 0)

(x2 + 1)2
(Tidy up the rational expression)

(6)
=

e
x

x2+1 (1− x2)

(x2 + 1)2
. (Final Result)

6) Use Implicit Differentiation to obtain an equation of the tangent line to the ellipse 3x2 + 2y2 = 11 at
the point (−1, 2).

Solution. We differentiate both sides of the equation with respect to x and express y′ from the resulting
relation:

3x2 + 2y2 = 11 ⇒ 6x+ 4y · y′ = 0 (Power Rule and Chain Rule)

y′ =
−3x

2y
(Rearrange to solve for y′)

Then consider the point (−1, 2). At (−1, 2), y′ = −3(−1)
2(2)

= 3
4
. To find the tangent line, we use this value

of y′ in the formula for the tangent line, i.e.

y = y′(x0, y0)(x− x0) + y0 (Use appropriate values for (x0, y0) and y′)

y =
3

4
(x− (−1)) + 2

y =
3

4
x+

3

4
+ 2 =

3

4
· x+

11

4

y =
1

4
(3x+ 11).

7) Suppose f is an odd function and is differentiable everywhere. Prove that for every number b > 0,
there exists a c ∈ (−b, b) such that f ′(c) = f(b)/b.

Solution. Since f is differentiable everywhere, f is continuous on [−b, b] and differentiable on (−b, b).
Therefore, by the Mean Value Theorem there exist a c ∈ (−b, b) such that

f ′(c) =
f(b)− f(−b)

b− (−b)

(∗)
=

f(b)− (−f(b))

2b
=

2f(b)

2b
=

f(b)

b
.

At (∗) we used that f(−b) = −f(b) since f is odd.

8) Apply l’Hospital’s Rule to find the following limit: lim
x→0

[
cos(x)

] 1
sin(x) .
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Solution. To apply l’Hospital’s rule, we need to find an indeterminate form: “0/0” or “∞/∞”. As it is
now, the expression is not in an indeterminate form. Notice however that moving cos(x) to the exponent
by writing

[cos(x)]
1

sin(x) = exp

(
1

sin(x)
ln(cos(x))

)
,

where exp(x) = ex is used to keep things readable, the exponent has an indeterminate form as desired,
specifically “0/0”. We note that we are only allowed to do this because when x is near 0, cos(x) is near 1,
so the value of ln(cos(x)) exists (Question: why would it would be problematic if we considered ln(sin(x))
as x approached zero?). Recall that if f is continuous at b and lim

x→a
g(x) = b, then

lim
x→a

f(g(x)) = f
(
lim
x→a

g(x)
)
= f(b).

[This is Theorem 8 on page 120 of the textbook.] In our case, f(x) = ex is continuous everywhere, hence,

if lim
x→0

ln(cos(x))

sin(x)
exists, then we can compute the limit by the above method. The limit in the exponent

can by found using l’Hospital’s Rule:

lim
x→0

ln(cos(x))

sin(x)
l’H
= lim

x→0

− sin(x)
cos(x)

cos(x)
= 0,

where the last equality follows by direct substitution. Therefore we have

lim
x→0

[cos(x)]
1

sin(x) = exp

(
lim
x→0

ln(cos(x))

sin(x)

)
= e0 = 1.

9) Determine the extrema (max/min) of the real function f(x) = xe−x2
.

Solution. Firstly we write xe−x2
as

x

ex2 and apply l’Hospital’s Rule to determine the horizontal asymptotes:

lim
x→∞

x

ex2

l’H
= lim

x→∞

1

2xex2 = 0 and lim
x→−∞

x

ex2

l’H
= lim

x→−∞

1

2xex2 = 0.

Here we used Basic Derivatives, the Chain Rule and the Power Rule. As the function is continuous on R,
this implies that the extreme points (minimum and maximum) can be explicitly found using the First- or
Second Derivative Test. Using Product Rule and Chain Rule we calculate:

f ′(x) =
(
xe−x2)′

= (x)′e−x2

+x
(
e−x2)′

= e−x2

+xe−x2

(−x2)′ = e−x2

+xe−x2

(−2x) = (1−2x2)e−x2

(2)

and

f ′′(x) =
(
(1−2x2)e−x2)′

= (1−2x2)′e−x2

+
(
e−x2)′

= −4xee
−x2

+(1−2x2)e−x2

(−2x) = 2x(2x2−3)e−x2

.
(3)

Our aim is to locate the extrema of f(x), thus we need to know where f ′(x) vanishes, that is we need to
solve f ′(x) = 0 for x. Glancing at formula (2) we see that

f ′(x) = 0 ⇐⇒ (1− 2x2)e−x2

= 0 ⇐⇒ x = ± 1√
2

since e−x2
> 0 for all x ∈ R. The nature of these critical numbers can be determined by applying one of

the derivative tests:

� The First Derivative Test means checking if f ′(x) changes sign at the critical number. From (2)
we see that {

f ′(x) < 0, if x < − 1√
2
or x > 1√

2
,

f ′(x) > 0, if − 1√
2
< x < 1√

2
,
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that is f ′(x) changes its sign from negative to positive at x = − 1√
2
and from positive to negative

at x = 1√
2
. Therefore f(x) has a minimum at x = − 1√

2
and a maximum at x = 1√

2
taking the

values

f(− 1√
2
) = − 1√

2
e−1/2 = − 1√

2e
, f(

1√
2
) =

1√
2
e−1/2 =

1√
2e

.

� The Second Derivative Test is done by computing the sign of f ′′(x) at the critical number. Plugging
x = − 1√

2
and x = 1√

2
into (3) yields

f ′′(− 1√
2
) = 2

√
2

e
> 0 and f ′′(

1√
2
) = −2

√
2

e
< 0,

i.e. f(x) has a minimum at x = − 1√
2
and a maximum at x = 1√

2
with the values

f(− 1√
2
) = − 1√

2
e−1/2 = − 1√

2e
, f(

1√
2
) =

1√
2
e−1/2 =

1√
2e

.

In conclusion, the (absolute) extrema of the function f(x) = xe−x2
are

(
− 1√

2
,− 1√

2e

)
and

(
1√
2
, 1√

2e

)
.
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