1) Prove using the $\varepsilon-\delta$ definition that $\lim _{x \rightarrow 3}(4 x-1)=11$.

Solution. Let $\varepsilon>0$ be arbitrary and take $\delta=\frac{\varepsilon}{4}$. Then $0<|x-3|<\delta$ implies that

$$
|(4 x-1)-11|=|4 x-12|=|4(x-3)|=4|x-3|<4 \delta=\varepsilon .
$$

Therefore $\lim _{x \rightarrow 3}(4 x-1)=11$.
2) Find the following limits without applying l'Hospital's Rule.
a) $\lim _{x \rightarrow-2} \frac{x^{2}-3 x-10}{x+2}$
b) $\lim _{x \rightarrow 0} \frac{\sqrt{\cos (x)}-1}{x^{2}}$
c) $\lim _{x \rightarrow \infty} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$

Solution. a) Factoring the numerator lets us simplify the expression. The limits is then found by the Difference Law and Basic Limits:

$$
\lim _{x \rightarrow-2} \frac{x^{2}-3 x-10}{x+2}=\lim _{x \rightarrow-2} \frac{(x+2)(x-5)}{x+2}=\lim _{x \rightarrow-2}(x-5)=-2-5=-7 .
$$

b) Using conjugates twice allows for a rewriting of the function as follows

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{\cos (x)}-1}{x^{2}} & =\lim _{x \rightarrow 0} \frac{\sqrt{\cos (x)}-1}{x^{2}} \cdot \frac{\sqrt{\cos (x)}+1}{\sqrt{\cos (x)}+1}=\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x^{2}(\sqrt{\cos (x)}+1)} \\
& =\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x^{2}(\sqrt{\cos (x)}+1)} \cdot \frac{\cos (x)+1}{\cos (x)+1}=\lim _{x \rightarrow 0} \frac{\cos ^{2}(x)-1}{x^{2}(\sqrt{\cos (x)}+1)(\cos (x)+1)} .
\end{aligned}
$$

The trigonometric identity

$$
\sin ^{2}(x)+\cos ^{2}(x)=1
$$

lets us write the numerator as $\left(-\sin ^{2} x\right)$, hence the limit takes the following form

$$
\lim _{x \rightarrow 0} \frac{-\sin ^{2}(x)}{x^{2}(\sqrt{\cos (x)}+1)(\cos (x)+1)} .
$$

By using the trigonometric limit

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

(we proved in class) we can evaluate the limit via the Product Law and the continuity of the cosine function at 0 . We get

$$
\lim _{x \rightarrow 0} \frac{-\sin ^{2}(x)}{x^{2}(\sqrt{\cos (x)}+1)(\cos (x)+1)}=\left(\lim _{x \rightarrow 0} \frac{\sin (x)}{x}\right)^{2} \frac{-1}{(\sqrt{\cos (0)}+1)(\cos (0)+1)}=-\frac{1}{4}
$$

since $\cos (0)=1$. Thus we have found that

$$
\lim _{x \rightarrow 0} \frac{\sqrt{\cos (x)}-1}{x^{2}}=-\frac{1}{4} .
$$

c) Factoring both the numerator and denominator yields

$$
\lim _{x \rightarrow \infty} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}} \frac{1-\frac{1}{e^{2 x}}}{1+\frac{1}{e^{2 x}}}=\frac{1-0}{1+0}=1
$$

where we used Quotient, Sum, and Difference Laws combined with the fact that $\lim _{x \rightarrow \infty} e^{-2 x}=0$.
3) Show using the Squeeze Theorem that $\lim _{x \rightarrow 0} \sqrt{x^{2}} \cos \left(\frac{1}{x^{2}}\right)=0$

Solution. For every $x \in \mathbb{R}$ we have $-1 \leq \cos (x) \leq 1$ and, in particular, this means that

$$
-1 \leq \cos \left(\frac{1}{x^{2}}\right) \leq 1, \quad \text { for all } x \in \mathbb{R} \backslash\{0\}
$$

Note that $\sqrt{x^{2}} \geq 0$ and $\sqrt{x^{2}}=0$ if and only if $x=0$. Hence we have that

$$
-\sqrt{x^{2}} \leq \sqrt{x^{2}} \cos \left(\frac{1}{x^{2}}\right) \leq \sqrt{x^{2}}, \quad \text { for all } x \in \mathbb{R} \backslash\{0\}
$$

Moreover, we know that $\sqrt{x^{2}}$, being an elementary function, is continuous on its domain, and in particular at 0 , i.e.

$$
\lim _{x \rightarrow 0} \pm \sqrt{x^{2}}=0
$$

Hence by the Squeeze Theorem we can conclude that

$$
\lim _{x \rightarrow 0} \sqrt{x^{2}} \cos \left(\frac{1}{x^{2}}\right)=0
$$

4) Prove the following statement using mathematical induction on $N$.
" $(1+x)^{N} \geq 1+N x$ for every integer $N \geq 0$ and real number $x>-1 . "$
Solution. Step 1 [Base Case]: We prove the base case, i.e., $N=0$.

$$
\begin{aligned}
& (1+x)^{0}=1 \\
& 1+0 \cdot x=1
\end{aligned}
$$

We have $1 \geq 1$, which is true so the base case holds.
Step 2 [Induction Hypothesis]: We assume that for some integer $k \geq 0$ we have

$$
\begin{equation*}
(1+x)^{k} \geq 1+k x \tag{1}
\end{equation*}
$$

where $x>-1$.
Step 3 [Inductive Step]: We want to prove that the inequality holds for $k+1$ as well. Since $1+x>0$, we can multiply both sides of (1) by $1+x$ without the inequality changing sign and obtain

$$
(1+x)^{k+1}=(1+x)(1+x)^{k} \geq(1+x)(1+k x)=1+x+k x+k x^{2} \geq 1+(k+1) x
$$

since $k x^{2} \geq 0$. Thus we got

$$
(1+x)^{k+1} \geq 1+(k+1) x
$$

which is exactly what we needed to show.
In conclusion, We have proven by induction that for any integer $N \geq 0$ and $x>-1$ we have $(1+x)^{N} \geq 1+N x$. This result in knows as Bernoulli's inequality.
5) Find the derivative of the real function $f(x)=e^{\left(\frac{x}{x^{2}+1}\right)}$. At each step, indicate which rule of differentiation is being applied.
Solution. We have

$$
\begin{align*}
& f^{\prime}(x) \stackrel{(1)}{=}\left[e^{\left(\frac{x}{x^{2}+1}\right)}\right]^{\prime}  \tag{ChainRule}\\
&\left.\stackrel{(2)}{=} e^{\left(\frac{x}{x^{2}+1}\right.}\right) \cdot\left[\frac{x}{x^{2}+1}\right]^{\prime} \\
&\left.\stackrel{(3)}{=} e^{\left(\frac{x}{x^{2}+1}\right.}\right) \cdot \frac{[x]^{\prime} \cdot\left(x^{2}+1\right)-x \cdot\left[\left(x^{2}+1\right)\right]^{\prime}}{\left(x^{2}+1\right)^{2}} \\
& \stackrel{(4)}{=} e^{\left(\frac{x}{x^{2}+1}\right)} \cdot \frac{1 \cdot\left(x^{2}+1\right)-x \cdot\left[\left(x^{2}\right)^{\prime}+(1)^{\prime}\right]}{\left(x^{2}+1\right)^{2}} \\
& \stackrel{(5)}{=} e^{\left(\frac{x}{x^{x}+1}\right)} \cdot \frac{x^{2}+1-x \cdot(2 x+0)}{\left(x^{2}+1\right)^{2}} \\
& \stackrel{(6)}{=} \frac{e^{\frac{x}{x^{2}+1}}}{\left(1-x^{2}\right)} \\
&\left(x^{2}+1\right)^{2}
\end{align*} .
$$

(Quotient Rule)
(Sum Rule and Basic Derivatives)
(Power Rule and Basic Derivatives)
(Tidy up the rational expression)
(Final Result)
6) Use Implicit Differentiation to obtain an equation of the tangent line to the ellipse $3 x^{2}+2 y^{2}=11$ at the point $(-1,2)$.

Solution. We differentiate both sides of the equation with respect to $x$ and express $y^{\prime}$ from the resulting relation:

$$
\begin{gathered}
3 x^{2}+2 y^{2}=11 \Rightarrow 6 x+4 y \cdot y^{\prime}=0 \\
y^{\prime}=\frac{-3 x}{2 y}
\end{gathered}
$$

(Power Rule and Chain Rule)
(Rearrange to solve for $y^{\prime}$ )
Then consider the point $(-1,2)$. At $(-1,2), y^{\prime}=\frac{-3(-1)}{2(2)}=\frac{3}{4}$. To find the tangent line, we use this value of $y^{\prime}$ in the formula for the tangent line, i.e.

$$
\begin{array}{ll}
y & =y^{\prime}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+y_{0} \\
y & =\frac{3}{4}(x-(-1))+2 \\
y & =\frac{3}{4} x+\frac{3}{4}+2=\frac{3}{4} \cdot x+\frac{11}{4} \\
y & =\frac{1}{4}(3 x+11) .
\end{array}
$$

7) Suppose $f$ is an odd function and is differentiable everywhere. Prove that for every number $b>0$, there exists a $c \in(-b, b)$ such that $f^{\prime}(c)=f(b) / b$.
Solution. Since $f$ is differentiable everywhere, $f$ is continuous on $[-b, b]$ and differentiable on $(-b, b)$. Therefore, by the Mean Value Theorem there exist a $c \in(-b, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(-b)}{b-(-b)} \stackrel{(*)}{=} \frac{f(b)-(-f(b))}{2 b}=\frac{2 f(b)}{2 b}=\frac{f(b)}{b} .
$$

At $(*)$ we used that $f(-b)=-f(b)$ since $f$ is odd.
8) Apply l'Hospital's Rule to find the following limit: $\lim _{x \rightarrow 0}[\cos (x)]^{\frac{1}{\sin (x)}}$.

Solution. To apply l'Hospital's rule, we need to find an indeterminate form: " $0 / 0$ " or " $\infty / \infty$ ". As it is now, the expression is not in an indeterminate form. Notice however that moving $\cos (x)$ to the exponent by writing

$$
[\cos (x)]^{\frac{1}{\sin (x)}}=\exp \left(\frac{1}{\sin (x)} \ln (\cos (x))\right),
$$

where $\exp (x)=e^{x}$ is used to keep things readable, the exponent has an indeterminate form as desired, specifically " $0 / 0$ ". We note that we are only allowed to do this because when $x$ is near $0, \cos (x)$ is near 1 , so the value of $\ln (\cos (x))$ exists (Question: why would it would be problematic if we considered $\ln (\sin (x))$ as $x$ approached zero?). Recall that if $f$ is continuous at $b$ and $\lim _{x \rightarrow a} g(x)=b$, then

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)=f(b) .
$$

[This is Theorem 8 on page 120 of the textbook.] In our case, $f(x)=e^{x}$ is continuous everywhere, hence, if $\lim _{x \rightarrow 0} \frac{\ln (\cos (x))}{\sin (x)}$ exists, then we can compute the limit by the above method. The limit in the exponent can by found using l'Hospital's Rule:

$$
\lim _{x \rightarrow 0} \frac{\ln (\cos (x))}{\sin (x)} \stackrel{\mathrm{r}}{ }=\lim _{x \rightarrow 0} \frac{\frac{-\sin (x)}{\cos (x)}}{\cos (x)}=0,
$$

where the last equality follows by direct substitution. Therefore we have

$$
\lim _{x \rightarrow 0}[\cos (x)]^{\frac{1}{\sin (x)}}=\exp \left(\lim _{x \rightarrow 0} \frac{\ln (\cos (x))}{\sin (x)}\right)=e^{0}=1
$$

9) Determine the extrema ( $\mathrm{max} / \mathrm{min}$ ) of the real function $f(x)=x e^{-x^{2}}$.

Solution. Firstly we write $x e^{-x^{2}}$ as $\frac{x}{e^{x^{2}}}$ and apply l'Hospital's Rule to determine the horizontal asymptotes:

$$
\lim _{x \rightarrow \infty} \frac{x}{e^{x^{2}}} \stackrel{\mathrm{I}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow \infty} \frac{1}{2 x e^{x^{2}}}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} \frac{x}{e^{x^{x^{2}}}} \mathrm{l}^{\prime} \mathrm{H} \mathrm{l} \lim _{x \rightarrow-\infty} \frac{1}{2 x e^{x^{2}}}=0 .
$$

Here we used Basic Derivatives, the Chain Rule and the Power Rule. As the function is continuous on $\mathbb{R}$, this implies that the extreme points (minimum and maximum) can be explicitly found using the First- or Second Derivative Test. Using Product Rule and Chain Rule we calculate:

$$
\begin{equation*}
f^{\prime}(x)=\left(x e^{-x^{2}}\right)^{\prime}=(x)^{\prime} e^{-x^{2}}+x\left(e^{-x^{2}}\right)^{\prime}=e^{-x^{2}}+x e^{-x^{2}}\left(-x^{2}\right)^{\prime}=e^{-x^{2}}+x e^{-x^{2}}(-2 x)=\left(1-2 x^{2}\right) e^{-x^{2}} \tag{2}
\end{equation*}
$$

and
$f^{\prime \prime}(x)=\left(\left(1-2 x^{2}\right) e^{-x^{2}}\right)^{\prime}=\left(1-2 x^{2}\right)^{\prime} e^{-x^{2}}+\left(e^{-x^{2}}\right)^{\prime}=-4 x e^{e^{-x^{2}}}+\left(1-2 x^{2}\right) e^{-x^{2}}(-2 x)=2 x\left(2 x^{2}-3\right) e^{-x^{2}}$.
Our aim is to locate the extrema of $f(x)$, thus we need to know where $f^{\prime}(x)$ vanishes, that is we need to solve $f^{\prime}(x)=0$ for $x$. Glancing at formula (2) we see that

$$
f^{\prime}(x)=0 \quad \Longleftrightarrow \quad\left(1-2 x^{2}\right) e^{-x^{2}}=0 \quad \Longleftrightarrow \quad x= \pm \frac{1}{\sqrt{2}}
$$

since $e^{-x^{2}}>0$ for all $x \in \mathbb{R}$. The nature of these critical numbers can be determined by applying one of the derivative tests:

- The First Derivative Test means checking if $f^{\prime}(x)$ changes sign at the critical number. From (2) we see that

$$
\begin{cases}f^{\prime}(x)<0, & \text { if } x<-\frac{1}{\sqrt{2}} \text { or } x>\frac{1}{\sqrt{2}}, \\ f^{\prime}(x)>0, & \text { if }-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}\end{cases}
$$

that is $f^{\prime}(x)$ changes its sign from negative to positive at $x=-\frac{1}{\sqrt{2}}$ and from positive to negative at $x=\frac{1}{\sqrt{2}}$. Therefore $f(x)$ has a minimum at $x=-\frac{1}{\sqrt{2}}$ and a maximum at $x=\frac{1}{\sqrt{2}}$ taking the values

$$
f\left(-\frac{1}{\sqrt{2}}\right)=-\frac{1}{\sqrt{2}} e^{-1 / 2}=-\frac{1}{\sqrt{2 e}}, \quad f\left(\frac{1}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}} e^{-1 / 2}=\frac{1}{\sqrt{2 e}}
$$

- The Second Derivative Test is done by computing the sign of $f^{\prime \prime}(x)$ at the critical number. Plugging $x=-\frac{1}{\sqrt{2}}$ and $x=\frac{1}{\sqrt{2}}$ into (3) yields

$$
f^{\prime \prime}\left(-\frac{1}{\sqrt{2}}\right)=2 \sqrt{\frac{2}{e}}>0 \quad \text { and } \quad f^{\prime \prime}\left(\frac{1}{\sqrt{2}}\right)=-2 \sqrt{\frac{2}{e}}<0
$$

i.e. $f(x)$ has a minimum at $x=-\frac{1}{\sqrt{2}}$ and a maximum at $x=\frac{1}{\sqrt{2}}$ with the values

$$
f\left(-\frac{1}{\sqrt{2}}\right)=-\frac{1}{\sqrt{2}} e^{-1 / 2}=-\frac{1}{\sqrt{2 e}}, \quad f\left(\frac{1}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}} e^{-1 / 2}=\frac{1}{\sqrt{2 e}} .
$$

In conclusion, the (absolute) extrema of the function $f(x)=x e^{-x^{2}}$ are $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2 e}}\right)$ and $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2 e}}\right)$.

